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NUMERICAL METHODS IN GASDYNAMICS

A. A. Dorodnitsyn

1. Introduction

The advent of high-speed computing machines is of particularly

important value in numerical methods in all fields of the exact sciences,

among them, gasdynamics, since it allows us to obtain solutions of

complete, unsimplified equations with an accuracy that completely

satisfies and even exceeds practical requirements. The results have,

in many cases, provided much more exact data than a simulated experiment,

to say nothing of the fact that the calculation requires much lower

expenditures than does an experiment.

The characteristic feature of gasdynamics processes is that,

generally speaking, they are accompanied by discontinuities in the

functions defining the process (pressure, density, velocity, etc.).

Therefore, for the numerical solution of problems in gasdynamics it

was necessary to develop mathematical methods which allowed us to

obtain discontinuous solutions.

It often happens that a method of solution which is strictly

valued for a certain class of functions is actually applicable to a
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V
a considerably broader class. Comparatively recently, the hope still

existed that the methods of solution of partial differential equations

developed for continuous and smooth functions would prove effective for

discontinuous solutions or equation coefficients. However, these

hopes have not been Justified. I shall give one very simple example

(suggested by A. A. Samarskiy), which will illustrate how a method

which is very good for continuous and smooth functions leads to

completely incorrect results when it is applied to discontinuous

functions.

Let us consider the simplest one-dimensional equation

d du
k =0

(it may be treated, for example, as a heat-conductivity equation or

a one-dimensional discontinuity equatiori with boundary conditions

(1.2) U(0) - 0, (, = I.-

For continuous and smooth k(x) very good numerical solutions are

given by the finite-difference scheme

u, ,-2uFU _t k, z-k_, ui,+- u,_
(1 3 ,.. ., . .. +-- 0 2

(h is the network spacing along jx.

Now let k(x) be a discontinuous function

k(x) = const where x<, k,
k Co,t where x>k, "

An accurate solution of (1.1) satisfying the condition of continu-

ity of u(x) (temperature) and of flow k du/dx = 0 (let us say of heat

flow) is easily found

TD-TT-62-979/+2+4 -2-



when x<C

(1.5) wh(x- 1. +

An exact solution of finite-difference equation (1.4) is also

found without difficulty. In fact, let the point of discontinuity

lie between xj and xj + 1 [if the entire interval (0,l) is broken

up into n spacings h = 1/n, J/n < t < (J + 1)/n], when i < J

u, = Cx,

(the constant C will be determined later on from the condition un =

Then, checking the two values uj + 1 and u + 21 we obtain
Su,+ =C Cx+,--2 X-h].

(1 .6) I (slh] ,

I u,+=C[x,, (+3)(Sx-l)]

When i j a + 2 Eq. (1.3) again reduces to

u,,- 2 u,+ u,_ = 0

and when i 3 + 2 elementary calculation gives

(1.7) U, .v (
Setting i = n, and taking into account the fact that un = u(1) = 1,

we obtain for C the expressionj

C= !
[5 -(3x+ 1) +1 (5-v)(3x+1) 2(x-1)(13x+7) ]

LQ'+3) (Su)~ (u43(5 +/ X 1 + (x+ 3)(Sx-1) k

By passage to the limit h-+ 0 (xj + 1_+ ) we obtain:

1TD-TT-62-979/1+2+f -3-
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and for u

wheriv<',

(x +3) (5m - 1)
u ( - (3x + () x_

,(+ 3) (5 -)

+ (5 -x) (3m-+ -1) wh
I+(X+3) (5x- )

Eqs. (1.5) and (1.8) coincide only when x = 1 (that is, k, = k 2),

thus the solution of finite-difference equation (1.3), even though,

generally speaking, it approaches a definite limit (1.8) [only for

certain values of t and x can the denominator in Eqs. (1.8) become

zero], does not give the solution to the stated problem. As is easily

seen there corresponds to the solution of the finite-difference scheme

the presence of a heat source at the point x -

{ k dui [k du]3kl x -)3

i.e., the finite-difference scheme- does not ensure the integral condi-

tion of conservation of heat flow at points of discontinuity.

It should be noted that the property of finite-difference schemes

observed in this example forces us to pay very close attention to their

use. In the solution of nonlinear gasdynamics equations, we are seldom

successful in rigidly proving that the method converges to the required

solution. The convergence is usually verified "empirically," by

carrying out a series of calculations with ever decreasing network

spacings, and if, beginning with some value of h a further decrease

in it does not change the result within the prescribed accuracy of

the calculation, we usually accept the convergence "on faith".

The example Just presented shows that in the case of discontinuous
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solutions this criterion of the correctness of the method leads to

error.

The source of error is the fact that the finite difference scheme

chosen for the solution of the equation does not approximate the inte-

gral law of conservation of heat flow in the presence of discontinuities.

Thus we must construct approximating operators so that in the limiting

case of discontinuity they will accurately represent the integral laws

of conservation.

2. Method of Finite Differences

The method of finite difference is the most common for the solution

of partial differential equations. First developed for equations of

the elliptic type, it was then generalized for hyperbolic and parabolic

equations. In recent years this method has found wide application to

the solution of nonlinear partial differential equations, as well as

in cases when their solutions are discontinuous. I should like to

dwell in detail on the latter problem.

Two methods of approaching the solution of this problem are recog-

nized at the present time. The first method dates back to Richtmayer

and consists of the introduction of an "artificial viscosity" into

the initial equations. Here, therefore, the original problem is not

solved, but a modified physical problem, in which the discontinuities

are excluded. The discontinuities are replaced by regions of abrupt

change in values. The solution of the original problem is obtained as

the limit of the solution to the modified problem as the viscosity

coefficient tends to zero. The second method, that about which we

were speaking in the introduction, consists of the special construction

of finite-difference schemes for which the integral conservation laws

-5-
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are satisfied in the limiting case of a discontinuity.

I shall dwell only briefly on the artificial-viscosity method,

pointing out those difficulties which are encountered in its practical

application.

In the numerical solution of equations by the artififial-viscosity

method, it is actually necessary to pase to a limit twice: first for

a fixed viscosity coefficient the network spacing tends to zero and

then (after obtaining a number of solutions with different viscosity

coefficients) the viscosity coefficient tends to zero. Of course,

this method of calculation will be extremely cumbersome. In reality

the calculation is carried out in such a way that the coefficient of

viscosity decreases simultaneously with the network spacing (in practice

the viscosity coefficient is chosen so that the shock wave will be

"spread" over 5-6 network spacings).

The introduction of viscosity generally lowers the accuracy of the

calculation. However, the viscosity is needed only where there are

shock waves and is not needed where the solution is smooth. Therefore,

the viscosity coefficient will not be taken constant, but as a function

of the velocity gradient, in the following form.

If the initial equation was

(2.1) au W(u) 0
dta ax

[u and F(u) may be considered vectors], the modified equation may be

written:

(2.2)~a aF (u) au)a

where T(A) is a positive function which increases with an increase

in the velocity gradient 6u/Qx [we may also set T(0) = 0]. Such a
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device accomplishes a decrease in the influence of viscosity where

its introduction is disadvantageous.

The other difficulty is the fact that in replacing Eq. (2.2) by

a finite-difference equation, convergence is ensured in the presence

of discontinuities and when T-4 0 only when this difference equation

has first-order accuracy. Therefore, in order to obtain a sufficiently

accurate result, it is necessary to carry out the calculation with a

very large number of network nodes. The calculation becomes exceedingly

cumbersome even for the best high-speed computing machines.

Of course convergence of difference schemes of a higher order

of accuracy is disrupted in the vicinity of discontinuities. In regions

of smooth solution, finite-difference schemes of a higher order of

accuracy improve the convergence. In order to ensure convergence and,

at the same time, not impair the convergnece outside the vicinity of

the shock wave, finite-difference equations are used, which may condi-

tionally be called "schemes of intermediate accuracy". Let L ")(u)-O'-

be a finite-difference equation of first-order accuracy, approximating

Eq. (2.2), and .12 (u)=O. a finite difference equation of second-

order accuracy. Any equation of the form

(2.3) a. Q'"1(u)-f(1 j 1''()=

will also approximate Eq. (2.2) and if a > 0 and fixed, the expression

on the right side of (2.3) is of first-order accuracy. But it is

possible to take the quantity a as a variable; to take it as equal

to or close to unity where there is "danger" of the formation of shock

waves, and, conversely, where the solution is smooth to take it as

small or equal to zero. Of course, this process of selecting a must

be automated for machine calculation, for which it is necessary to
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compute the "criterion of wave generation" by the values of u at a

number of neighboring points and to assign a as some function of this

criterion. This method allows us to increase the accuracy of the

calculation. However, it leads to a very appreciable complication of

the logical scheme of the calculation, that is, it significantly compli-

cates the programming of problems for high-speed computing machines.

Let us now consider the second method of solving discontinuous

problems. The differential equations of gasdynamics are expressions

of the laws of the conservation of mass, momentum, and energy. There-

fore we may list them in "divergent" form.

In the case of two independent variables (two coordinates or

one spacial variable and time), the equations may be written in

"divergent" form as follows:
ap aQ

(2.4) ax + 0-=I"

where Pa Q, and F are some functions of unknown quantities and, perhaps,

independent variables. Right sides which differ from zero may occur

in the presence of sources (for example heat liberation due to chemical

reactions). Integrating Eq. (2.4) over some domain 0 bounded by the

contour Q, we arrive at the integral relation:

Pdv -' d ( fhixj,
(2.5) 1

which will be valid not only for continuous P and Q. but for piecewise-

continuous as well. Thus equations in the form of (2.5) will always

be effective for gasdynamic processes, while Eqs. (2.4) may lose meaning

in the vicinity of discontinuities. Specifically, all the conditions

for the discontinuities are obtained from Eq. (2.5).

Therefore, even when constructing numerical methods of solution
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suitable for application to the case of discontinuities, it is necessary

to proceed from equations in the form of (2.5), and not from partial

differential equations.

For clarity we shall examine the construction of finite-difference

equations for one-dimensional plane motion of a gas. By using the

Lagrangian coordinate system in which tke variables are the time t and

the mass of a gas column of unit area and cross section x (read from

some initial point). In this coordinate system, the equations of the

problem are written in the form:

(26 Lu a _ 0U2 apu
(2t6 a+x -_W-- =0,_ ax2)_

(here u is the velocity; p the pressure; v the specific volume; ard

E the internal energy, for an ideal gas E=pv/(x-1), , where x=CI,/

is the ratio of the specific heats).

Corresponding to these differential equations are the iz tegral

relations:

(2.7) !(udx-pdto = , ,v+,d ,- =0.

After taking a network rectangle with vertices

(X., W.) (X.., Q., (4+19, t.+O), (X., t..,.

over the contour Z, the integral relations (2.7) may be presented in

the form:

I",n , h - P",:! h-, +, --P"'.' r: 0,
(2.8) In MIL

, h 1- i m-1 . ,

in I+ I In+. I

2 i, f 4  2 ., -

Here h- x,, ., r,,, t,,, the subscript m denotes the value of

the function when x = Xm, the subscript n the value of the function
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when t tn, the subscript m + 1/2 some mean value in the interval

(XmP xm + 1) and n + 1/2 some mean value in the interval (tni tn + 1) .

If all quantities were continuous, we could easily relate the mean

values of the quantities to the values at the nodes of the network

(for example, by taking the half-sum of neighboring nodal values).

However, since we wish to construct a method of calculation which is

also suitable in the presence of shock waves, we should consider any

point in the region a possible point of discontinuity. In the finite-

difference interpretation, this means every network node should be

considered a location of discontinuity. Thus at the moment of time tn

we consider the point xm a point of discontinuity to the right of which
n

the values of S are equal to Sm + 1/2 1 and to the left, equal to

Sm - 1/2 Then waves (shock or rarification) will leave in both

directions from thepoint Xm, at that same point xm values of the quan-

tities will be established corresponding to the integral conditions for

the discontinuity [cu--p]=O, [,-ii]= O, [c(Et u2/2)-pu=O, where c is the

velocity of the shock wave. This value will be retained until waves

from other network nodes reach this point. But if the time spacing T

is chosen so that this does not occur (this condition also satisfies

the convergence condition of the finite-difference method for hyperbolic

equations), the quantities PmS vm etc. will remain constant throughout

the entire interval.

The dependences between Pm' Pm + 1/2' and Pm - 1/2 may be presented

(after transforming the conditions for discontinuities in the form

CA Ux- 2,, ( -1)PM+(X-l .P.- 1 '
(2 .9) 2t ' "

(22
(2.9)- 2Vm [( )Pm,+(X--l)P,, 1,

P.(c, +t C') = C', .+C, I.. +CA cR(uM 2 - 1_)
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Here c and cr are the absolute values of the velocities of the left

and rigt shock waves respectively. Eqs. (2.9) are valid if both shock

waves (P->P--I P->P. I). For rarif ication waves, Eqs. (2.9) should

be replaced by the corresponding conditions for rarification waves.

After determining Pm from Eq. (2.9), v m is found elementarily

,'.+Cg +i ± -Cg u.-2 + c.u,. ,I -P.+

and Eqs. (2.8) allow us to make the time spacing.

The method set forth above was proposed by S. K. Godunov in 1952

and has been successfully applied to the solution of practical problems.

In constructing a finite-difference approximation for partial

differential equations to obtaining discontinuous solutions, each

network node must be considered a possible point of discontinuity. The

relationship between the quantities for the discontinuity must be

taken in accordance with the integral conditions of conservation (i.e.

to take these relations as exact, as in the example set forth above,

or approximate, but such as to ensure the prescribed accuracy of

calculation).

3. Method of Integral Relations

A very effective method for solving problems on high-speed computing

machines is the method of approximate reduction of partial differential

equations to systems of ordinary differential equations. This method

allows us to make use of the highly developed apparatus for the solution

of ordinary differential equations, and, in addition, in the presence

of unbounded domains it allows us to use other well developed methods

for the asymptotic solution of ordinary differential equations.

Difficulties arise in the application of this method (especially

with nonlinear equations) when it is necessary to solve a boundary-
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value problem for the approximate systems of ordinary differential

equations. Therefore, this method is effective for boundary-value

problems in those cases which allow us to find a saficiently accurate

solution when the order of the approximate system of ordinary equations

is low. As experience has shown, a highly satisfactory accuracy is

attained when integral methods are used, i.e., integral methods when

the integral relations expressing the laws of conservation are set as

the basis for construction of an approximate system of ordinary differ-

ential equations.

As stated above, the gasdynamics equations may be presented in

"divergent" form:

( )I' ,(x,y,,us... ..)+ - Q1(x,y, u1 ..... ,) - F,(x y, ul,..., u.)

(i= 1,2,3.

where ul, f.., un are uninown functions.

Let it be necessary to solve system of equations (3.1) in domain

which has the shape of a curvilinear rectangle, the boundaries

of which, let us say, are the lines

(3.2) ., , b, y=O,y=a(x)

(in special cases a may be equal to - a, b = +a). Dividing the domain

up into N strips of width 6/N and integrating each of the equations of

system (3.1) with respect to Z across each strip, we obtain the system

of integral relations

k I Yk+1

(3.3) fPy- )(k+,),,+,-kp,.k] +Q,. +- Q,.,= fF.dy,.
Y'k NJt

y,=ki--1, 2...,.n; k= 0, 1....N-; -
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The upper boundary of the domain y - 6(x) can be a given function,

and it can also be an unknown function, subject to determination. In

the first case a total of n boundary conditions should be given at the

boundaries y - 0 and y = 8(x), and in the second case, n + 1 boundary

conditions should be given.

Of course the lower boundary of the domain may also be curvilinear.

The generalization of integral relations (3.3) for this case is obvious.

Integral relations (3.3) present themselves physically as the

conservation laws (mass, energy, momentum, etc.) set down for the strips.

If we now represent the functions Pi and Fi with the aid of some

interpolation formulas by their values Pi, k and Fi, k at the boundaries

of the strips, the integrals in the relations (3.3) are approximately

represented in the form
Yk+1

(3.4) dy= 9-0

and analogously for the integral of Fi e In Eq. (3.4) the coefficients

A v are definite numbers which depend on the chosen interpolation
c. V

formula.

The substitution of Eq. (3.4) into integral relations (3.3) leads

to a system of nN ordinary differential equations relative to n(N + 1)

unknown functions ui,k (or n(N + 1) + 1 unknown functions if 6(x) is

also previously unknown). The addition to the system of n (or n + 1

When 6(x) is not given ) conditions for the boundaries y = 0 and y = 6(x)

closes the system, and thus the problem is reduced to a closed system

of ordinary differential equations.

Note that the selection of the system of functions, with which

the interpolation formulas for P. and Fi are constructed, has signifi-

cant importance for the accuracy of the calculation. The "inaptness"
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of the selection of the system of interpolation functions depends, of

course, on how well we represent qualitative behavior of the solution.

As is apparent from the above,

characteristic the method of integral relations is

easily applied to the case of unknown

boundaries of a domain. This has

special significance in gasdynamics

problems, where the shape of the

shock wave and the boundaries of

Fig. 1. Flow-past diagram the domains of influence are not
at -1.known beforehand.

Let us consider, for example, the problem of flow past a body

with a velocity exactly equal to the speed of sound. This problem

was solved by P. I. Chushkin. For simplicity, we shall consider a

symmetrical body. Here it is necessary to find a solution to the

equations of gasdynamics in the domain bounded by the axis of symmetry,

the body contour, and the characteristic of the first family tangent

to the sound curve at infinity (Fig. 1). The shape of this character-

iUtic is unknown. Corresponding to the line y = 0 in the general

theory of the method is the axis of symmetry; corresponding to the

curve y = 6(x) is the above-mentioned characteristic. We have two

relations for this characteristic: the differential equation of the

characteristic itself and the relation between the incrementa in the

dope of the velocity vector and the increments in the velocity itself.

In this problem the number of unknown functions n is equal to 2

(let us say the vebcity v and the slope of the velocity 4). For the

axis of symmetry we have one condition (4 = 0), and 2 conditions for

the unknown characteristic, a total therefore of 3 = n + 1 conditions.



In the problem of the supersonic flow past a b.unt body, i.e.,

with a detached shock wave, the shape of the shock wave is unknown.

Corresponding to the shock wave is the boundary y = 6(x) of the general

theory; corresponding to the body contour is the boundary y = 0 (Pig. 2).

In this problem there are a total of 4 unknown functions (e.g., the

two components of the velocity u and v, the density t, and the pressure

~). The condition of no flow by the body contour provides one boundary

condition, and for the shock wave we have four conditions (each of the

quantities u, v, e, 2 expressed in terms of the slope of the shock

wave). Altogether, therefore, we have 5 - n + 1 conditions, i.e.,

as many as are necessary for the construction of a closed system of

ordinary differential equations, in which the width of the region will

enter as one of the unknown functions. The problem of the supersonic

flow past bodies with a detached shock wave was solved by 0. M.

Belotserkovskiy.

Shock wave The two problems given here,

as far as I know, have not been

solved by any other method.

It is interesting to illustrate

the actual rapidity of convergence

of the method of integral relations

Fig. 2. Flow-past diagram using the results of P. I. Chuskin
with detached shock wave.

and 0. M. Belotserkovskiy. Calcula-

tions of the critical Mach number for ellipses and ellipsoids according

in the first, second, and third approximations are presented in Fig.

3. The velocity distribution around a circle when M. = Mcr in the

presence of circulation is given in Fig. 4.
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In Fig. 5 and 6 are listed the results of calculations of the

flow past a circle of a gas stream at the speed of sound at infinity.

The shape of the Shock wave is shown in Fig. 7, and the pressure

distribution around a cylinder with flow past by a supersonic stream

is shown in Fig. 8.

As is apparent from the graphs, the calculation is sufficiently

accurate in the second approximation, in which the entire domain has

been subdivided into only two strips. We can hardly say here that the

law of the convergence to zero of the error of the approximation

appeared in the second or third approximation. From a practical point

of view, the limiting law of convergence to zero of the error of the

method is of little interest. It is important for the method that the

accuracy needed in practice be attained in low-order approximatons.

And the examples presented here illustrate the effectiveness of the

method of integral relations in this respect.

4. Remark on the Method of Characteristics

The classical problems of the method of characteristics -

Cauchyts problem, Goursat's problem, and also the determination of the

gas flow along a given characteristic curve of the first family and

the contour of the body past which the flow occurs - at the present

time (with calculation on high-speed computing machines) can be

considered extremely simple problems.

Cases in which characteristic curves of one family intersect, i.e.

in which shock waves arise, present the greatest difficulty when the

method of characteristics is used.

In steady-state problems of aerodynamics, it is possible in most

cases to determine the presence of shock waves and their approximate
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r
position beforehand. This is considerably harder to do in nonsteady-

state problems. Therefore the method of finite differences is chiefly

used in the solution of nonsteady-state problems, though the convergence

of the method of characteristics is considerably better than that of

the method of finite differences.

Known difficulties are encountered when the method of character-

istics is used in the vicinity of the sound curve and when constructing

a head-attached shock wave.

In the first case it is most advisable to depart from the sound

curve with the aid of series (it is, in practice, sufficient to use one

or two terms of the series).

In calculating by the method of characteristics with simultaneous

construction of the shock wave, it is difficult to ensure stability of

the calculation, especially if the angles of intersection of the

characteristic curves of the first family with the shock wave are

small. Here it is also more advisable to use series in the construction

of the initial element of the shock wave.

5. Conclusion

In conclusion, I wish to note that from my point of view the most

important problem at the present time in the field of the numerical

methods in gasdynamics is the development of effective methods for the

solution of three-dimensional problems (spatial steady-state flows and

nonsteady-state two-dimensional ones).

Of course, one can not say that all two-dimensional problems have

already been solved and that nothing remains to be done with regard to

improving the methods of calculation. However, one can say that with

high-apeed computing machines almost any two-dimensional problem can

FTD-TT-62-979/1+2+4 -18-



r
be solved, even if in a very cumbersome way. Although only relatively

simple three-dimensional problems are being solved, there still remains

in this problem many fundamental difficulties, and not only computation

difficulties. As regards the practical significance of three-dimen-

sional problems, this is obvious to everyone.

The development of methods for the numerical solution of three-

dimensional problems would give scientists and engineers in the field

of aerodynamics a powerful tool in their scientific research, as well

as in the solution of actual engineering problems.
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